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Microchip-based single-cell functional proteomics
for biomedical applications
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Cellular heterogeneity has been widely recognized but only recently have single cell tools become avail-

able that allow characterizing heterogeneity at the genomic and proteomic levels. We review the techno-

logical advances in microchip-based toolkits for single-cell functional proteomics. Each of these tools has

distinct advantages and limitations, and a few have advanced toward being applied to address biological or

clinical problems that traditional population-based methods fail to address. High-throughput single-cell

proteomic assays generate high-dimensional data sets that contain new information and thus require de-

veloping new analytical frameworks to extract new biology. In this review article, we highlight a few biolog-

ical and clinical applications in which microchip-based single-cell proteomic tools provide unique advan-

tages. The examples include resolving functional heterogeneity and dynamics of immune cells, dissecting

cell–cell interaction by creating a well-controlled on-chip microenvironment, capturing high-resolution

snapshots of immune system functions in patients for better immunotherapy and elucidating phosphopro-

tein signaling networks in cancer cells for guiding effective molecularly targeted therapies.

1. Introduction

Within a biological system, the “genetic codes” are transmit-
ted, processed, integrated and ultimately executed through

networks of proteins interacting with one another and with
other biologically relevant molecules inside cells. Proteins are
key executors of biological processes and connect genomic
information to biological functions, including providing cel-
lular structure, transporting molecules, catalyzing bio-
chemical processes and regulating signal transduction.1

Functional proteomics aim to characterize abundances, post-
translational modifications (PTMs) and kinetics of proteins
involved in disease progression, immune response, cell dif-
ferentiation and so on. For example, catalytically active ki-
nases and associated effector proteins comprise the intracel-
lular signaling cascades and are often hyperactivated in
cancer cells. Secreted cytokines, chemokines and proteases
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are commonly associated with immune cell functions. Tradi-
tional methods on protein measurement such as western
blotting, mass spectrometry and enzyme linked immunosor-
bent assay (ELISA) are population-based approaches that may
mask the underlying molecular heterogeneity, as even geneti-
cally identical cells respond variably to the same cues.2 Non-
genetic cellular heterogeneity has been increasingly recog-
nized as a key feature of many processes of great interest,3

such as cancer metastasis,4 tumor cell responses to drugs,5–7

developmental biology,8 stem cell differentiation9 and im-
mune response.10 For example, varying levels of Sca-1 protein
in haematopoietic stem cells were found to determine the
timing and type of stem cell differentiation.9 In a clinical
context, T cell populations previously thought to be homoge-
neous were found to contain subpopulations with different
cytokine secretion profiles by single-cell analysis,10 and these
functional differences may serve to predict patient immune
response to therapies. Recent technological advances have
permitted robust and high-throughput analysis of the ge-
nome and transcriptome at the single cell level for character-
izing cellular heterogeneity.1 However, measuring DNA and
RNA produces an incomplete picture at the protein level be-
cause it fails to provide information on protein PTMs, loca-
tions or interactions with other proteins. Importantly, a poor
correlation of RNA expression and protein abundance has
been reported by a few research groups using single cell
analysis.11–14 For these reasons, single-cell proteomic tools
are greatly needed for assaying functional protein activities,
including abundances, PTMs, kinetics and interactions with
other proteins or biologically relevant molecules.

Single-cell level measurement of protein enables detection
of cellular heterogeneity within populations of seemingly
similar cells and provides valuable insight into mechanisms
that dictate such heterogeneity.1,15 The functional signifi-
cance of the observed heterogeneity is determined in two
ways. First, the heterogeneous populations can be
decomposed into a mixture of simpler, more homogeneous

subpopulations that contribute unequally to disease progres-
sion or response to therapeutic intervention. In some clinical
scenarios, there are behaviors of interest exhibited by only a
small subset of cells or even a few outlier cells.16,17

Population-averaged assays, obviously, fail to resolve these
phenotypically distinct subpopulations. Second, the stochas-
tic nature of intracellular events and cell–cell interactions
lead to fluctuations of protein levels that are measured across
each of many otherwise identical singe cells and not captured
by the population-based assays.18–21 Such fluctuations or
heterogeneity in copy numbers of a given protein may con-
tain information regarding the associated protein signaling
networks. Determining whether the observed heterogeneity
has functional significance requires an analytical framework
for quantifying heterogeneity and assessing its information
content. Mathematical or statistical physics models with pre-
dictive capacity have been developed to interpret the single-
cell proteomics data for new biology and strategies for clini-
cal intervention.22,23

The biggest challenges to measure functional proteins in
single cells are the small amount of protein and the enor-
mous complexity of the proteome. In certain instances, rele-
vant functional proteins such as phosphoproteins are present
at low abundance (102–104 copies per cell).24,25 In certain
clinical scenarios, primary cells (direct from blood or tissue
samples) were found to contain significantly lower copy num-
bers of a given protein than do cultured cells.23 Single-cell
level protein measurement thus requires extremely sensitive
assays and minimization of technical error.

Flow cytometry is the most established method for single-
cell protein analysis based on fluorophore-labeled antibodies
and featured with high levels of throughput and
multiplexing.26 Roederer and Nolan's groups pioneered
multi-parameter analysis of 10–15 key proteins associated
with signaling pathways in single cells27–29 and turned cytom-
etry into a powerful tool to semi-quantitatively analyze path-
ways underlying many diseases30,31 and for drug screening.32
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Mass cytometry extends the concept of flow cytometry to a
substantially higher level of multiplexing through the use of
antibodies that are tagged with transition metal mass labels
rather than fluorophore labels.33 A total of 34 parameters, in-
cluding 31 antibodies, cell viability, DNA content and relative
cell size, have been measured in single bone marrow cells at
a ∼1000 cells per s throughput.33–35 Image cytometry is an-
other established method for single-cell protein detection
based on fluorophore-labeled antibodies and featured with
high-throughput due to recent advances in high-content im-
aging.36 Because of the spectra overlap of fluorophore-labeled
antibodies, image cytometry is limited to the low
multiplexing capacity. To overcome this problem, Zrazhevskiy
et al. reported a multicycle cell staining strategy for measur-
ing more than 20 proteins by multiple staining/de-staining
cycles and using semiconductor quantum dots as fluorescent
labels.36 In the same year, Gerdes et al. reported a similar
fluorophore-inactivated multiplexed immunofluorescence ap-
proach to achieve single-cell analysis of 61 protein antigens
in 747 human colorectal cancer specimens.37 Cytometry
methods are mainly limited by the cross-reactivity of anti-
bodies and difficulty in assaying secreted proteins.

Different from antibody-based cytometry methods for
targeted proteomics, mass spectrometry (MS) is a label-free
technology for protein detection and thus has the potential
to provide quantitative analysis of the entire proteomics.38

The label-free feature of MS allows the untargeted (discovery)
mode to identify key functional proteins without prior knowl-
edge. Continuous efforts have been devoted to transforming
MS into a technology of progressively smaller population of
cells,39–44 or even single cells.45,46 Compared with well-
established cytometry methods, single cell MS is in its
infancy. It has, however, witnessed vast development in
multiplexing, throughput, sensitivity and sample
preparation.45–47 Virant-Klun et al. consistently identified
∼450 proteins from single human oocytes that have ∼100 ng
of protein content per cell, and investigated the differential
protein expression at the germinal vesicle stage and the
metaphase II stage.45 Lombard-Banek et al. developed a
bottom-up high-resolution MS platform and protocol to iden-
tify 500–800 nonredundant protein groups in single embry-
onic cells from a 16-cell frog embryo.46 Besides sensitivity, de-
livering the proteome of a single cell to a mass spectrometer
with minimal protein loss is a major technological challenge
for single-cell MS. Highly efficient microchip-based sample
preparation platforms and novel coupling mechanisms of
microchips to MS have been developed to address this
challenge.48–50 Compared with MS based on a population of
cells, single-cell MS is mainly limited by low-abundance pro-
tein assays and discovery proteomics.

This article reviews the technological advances in
microchip-based toolkits for single-cell functional proteo-
mics. Microchip-based devices have been increasingly utilized
as a means to integrate many functions into a single system,
handle a small amount of samples with decreased consump-
tion of expensive reagents, subject cells to controlled cues,

and precisely manipulate single cells.51 Microchips enable
creation of well-controlled microenvironments for cell incu-
bation and other functional assays including cell migration,
motility and deformability that can be correlated with proteo-
mic signatures for each cell assayed. These features of micro-
chips offer unique advantages compared with cytometry
methods and single cell MS. Microchip-based toolkits for
single-cell proteomics have been rapidly extended and
evolved in the past decade. Each of these tools has distinct
advantages and limitations, and a few have advanced toward
being applied to address biological or clinical problems. Al-
though some reviews on single-cell proteomics have been
published,1,15,22,23,35,52 this review is more focused on recent
progress in microchip-based technologies and the new biol-
ogy learned from single-cell proteomics data sets.

2. Microchip-based single-cell prote-
omic technologies

The characteristics of a single-cell proteomic assay include
multiplexing capacity, throughput, sensitivity and dynamic
range. Multiplexing capacity determines the number of pro-
teins assayed in a single cell measurement and throughput
determines the number of cells analyzed in parallel. Many
platforms measure the abundance of a given protein in rela-
tive units, and in some platforms, calibration curves are
established to translate analytical signals into protein con-
centration, or even copy numbers which are required by
some information theoretical approaches for gleaning useful
biological insights.53,54 Different single-cell proteomic tech-
nologies are reviewed in this section with a discussion of ad-
vantages and limitations. The choice of a tool should be
based on the biological questions or clinical measurement of
interest, and requirements of the sample.

2.1 Microchip-based image cytometry

Image cytometry that relies on cell staining typically assays
3–4 membrane or intracellular proteins per cell because of
the spectral overlap of fluorophore-labeled antibodies. Sun
et al. presented a microfluidic image cytometry platform
allowing concurrent measurement of four signaling proteins
associated with the PI3K pathway from individual cells taken
from brain tumor biopies.55 To increase the multiplexing ca-
pacity, photocleavable DNA labels have been utilized to label
antibodies, leading to system-wide profiling on single cells.
The Weissleder group tagged antibodies of interest with short
(∼70-mer) DNA barcodes using a stable photocleavable
linker, and thus each antibody has a unique sequence label
(Fig. 1A). After barcoded antibody binding to the cells, the
photocleavable linkers release the unique DNA barcodes that
can then be detected by gel electrophoresis in a semi-
quantitative way56 or hybridizing to fluorescent complemen-
tary barcodes for quantification.57 The quantified barcodes
are translated to protein expression levels by normalizing to
DNA per antibody and housekeeping proteins. 90 proteins
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were profiled at the single-cell level for demonstration of bio-
logical variation.57 This antibody barcoding with photo-
cleavable DNA (ABCD) platform allows co-detection of genetic

alternations and protein expression. The ABCD platform
reaches the highest level of multiplexing of single-cell proteo-
mic assay, but is limited by the low throughput of parallel

Fig. 1 (A) Schematic representation of the antibody barcoding with photocleavable DNA platform. Protein targets in single cells are labeled with a
cocktail of DNA-conjugated antibodies containing a photocleavable linker to allow release of DNA barcodes that can be quantitated by hybridizing
to fluorescent complementary barcodes. Reproduced from ref. 57 with permission from the American Association for the Advancement of Science.
(B) Assay process flow of the microengraving experiment designed to measure secreted proteins at the single-cell level over time. Single cells iso-
lated in thousands of microwells are incubated with a glass substrate that is microengraved with various antibodies for capture of secreted pro-
teins. The substrate is replaced at various time points to reveal secretion kinetics. Reproduced from ref. 63 with permission from the Proceedings
of the National Academy of Sciences. (C) Photograph and fluorescence barcode readouts of the single-cell barcode chip designed for assaying
secreted proteins from single cells. The chip is composed of a two-layer microfluidic network that generates thousands of microchambers. Single
or a few cells isolated in the microchambers secrete proteins that are captured by antibody barcodes coated on a glass substrate. Four developed
barcodes are shown; the yellow number indicates the number of cells in the associated microchamber. Reproduced from ref. 10 with permission
from Nature Publishing Group. (D) Single-cell western blotting workflow. The scWestern array is composed of a thin layer of photoactive poly-
acrylamide gel that houses single-cells in microwells, enables lysis in situ, gel electrophoresis, photo-initiated blotting to immobilize proteins and
antibody probing for proteomic analyses. Reproduced from ref. 79 with permission from Nature Publishing Group. (E) Work flow of the droplet-
based microfluidics for single-cell encapsulation and detection of secreted cytokines. Single T cells are encapsulated in agarose-gel droplets to-
gether with functionalized capture beads that capture cytokines secreted from encapsulated cells. The droplets are then gelled and washed to
break the emulsion, incubated with fluorescently labeled detection antibodies, and quantified by flow cytometry. Reproduced from ref. 90 with
permission from the Royal Society of Chemistry. (F) Proximity ligation assay workflow. In single-cell lysate, two proximity probes bind the target
proteins and the connector oligonucleotide hybridizes with the probes followed by formation of a double-stranded DNA. After digestion of pro-
teins by proteases, the remaining dsDNA is detected by droplet digital PCR. Reproduced from ref. 14 with permission from Elsevier.
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single-cell measurements and the antibody cross-reactivity
due to single antibody immunoassay.

2.2 Microengraving method

The Love group firstly used small volume microwells (0.1–1
nL) in an array format to isolate individual cells and quantify
secreted proteins by a microengraved (antibody coated) sub-
strate and sandwich-type immunoassay (Fig. 1B).58–68 Impor-
tantly, the microengraved substrate can be replaced multiple
times in situ, thus enabling kinetic studies of cell secretion at
the single-cell level.62 The technical challenge is the single-
cell resolution when a given cell only produces a few thou-
sand or lower copies of a protein of interest. The solution is
to enclose cells within a microenvironment with a volume
lower than 1 nL. The resultant concentration of the secreted
protein is thus sufficiently higher than the detection limit of
antibody pairs. Meanwhile, such a small volume of the micro-
wells enables a large number of parallel measurements
performed on a single chip. Up to three secreted protein are
simultaneously detected using colorimetric discrimination
and hybridization chain reaction has been utilized to amplify
signals resulting from the sandwich immunoassay, leading to
a ∼200-fold decrease of detection limit relative to direct fluo-
rescence detection.61 Numerical simulations have been
employed to investigate the transport and binding dynamics
of proteins secreted from single cells for increasing the sensi-
tivity and robustness of this microengraving-based, single-
cell protein assay.67 This high-throughput single-cell method
allows easy fabrication and assay operation, as well as ex-
hibits the capability of studying secretion dynamics, but is
limited by its multiplexing capacity.

2.3 Single-cell barcode chip

A related approach is the single-cell barcode chip (SCBC) de-
veloped by the Heath group.10 The SCBC isolates single cells
within 1040 3 nL volume microchambers that contain a mini-
aturized antibody array, patterned as a barcode for capturing
and spatially selective detection of a dozen or so secreted pro-
teins from single cells (Fig. 1C).10 The key feature of the
SCBC is the preparation of miniaturized, spatially encoded
antibody barcodes for multiple protein measurement, leading
to a high level of multiplexing. The miniature antibody
barcodes are created by a DNA-encoded antibody library
(DEAL) technology,69,70 including microfluidics-based flow
patterning of a ssDNA barcode and its subsequent conversion
into an antibody barcode through a cocktail of antibodies la-
beled with complementary ssDNA' oligomers. This strategy al-
lows preparation of small-sized, highly uniform antibody
barcodes across the entire surface of the glass slide. 20 μm
wide DNA strips at a 30 μm pitch are significantly smaller
than the standard spotting method. Up to 20 barcode stripes
can be patterned in a single microchamber.69,70 By increasing
the number of microchambers on the chip, the throughput
of single cell assays can be increased to >1000 with a
multiplexing capacity higher than 12.71,72 Since the cells are

randomly distributed in thousands of microchambers on the
chip, the number of single-cell microchambers varies and
highly depends on the cell loading condition including the
cell concentration and flow rate. A higher throughput may in-
duce the increase of chip size but does not result in addi-
tional complexity of chip design and operation. For increase
of proteins assayed at the single-cell level, the barcode size
has to be decreased or other identifiers are introduced for
encoding more proteins. Wang et al. created a DNA spot ar-
ray by modifying the DNA barcode patterning method.73 Each
DNA spot has a unique molecular identifier for localizing a
labeled capture antibody, enabling spatial encoding of up to
9 antibodies in a 0.15 nL volume microchamber. Lu et al.
combined spatial (15 barcode locations) and spectral (3 fluo-
rescent colors) multiplexing for double encoding antibodies
and thereby up to 45 proteins were co-detected in single cells,
representing the highest multiplexing capacity recorded to
date for the SCBC assay.74

Shi et al. modified the initial SCBC design to assay intra-
cellular proteins with single-cell resolution.75 Each micro-
chamber is constructed with a companion reservoir that con-
tains the cell lysis buffer. When the valve between the cell
chamber and the reservoir is opened, the individual trapped
cells are lysed and their cytoplasmic proteins are released.
The volume of the microchamber is sufficiently small (2 nL)
so that many proteins released from single cells are present
at detectable levels using miniaturized sandwich immuno-
assay. The SCBC accommodates 120 separate experiments
and a dozen of phosphoproteins and membrane proteins as-
sociated with PI3K and Ras/MAPK signaling pathways have
been investigated in three isogenic cell lines with different
mutation status and under different perturbation condi-
tions.75 Calibration curves are used to convert the fluores-
cence readouts to the number of molecules detected. Notably,
a careful analysis utilizing both experiment and simulation is
performed to evaluate the technical error of this assay
(∼10%) and determine contributions from biological varia-
tion versus technical error. The number of parallel measure-
ments is expandable to 320 after optimizing the design of
microchambers and controlling the valves.53,54 A significant
advance has been reported by Wang et al. with a major modi-
fication of the SCBC platform. A valve-less architecture with
8700 0.15 nL volume microchambers was created by
employing a set of deformable, three-state poly-
Ĳdimethylsiloxane) (PDMS) posts for controlling cell loading,
on-chip cell lysis and protein assay.73 Importantly, this SCBC
architecture allows simultaneous measurement of secreted,
membrane and cytoplasmic proteins, as wells as metabolites
from the same single cells, which is a unique advantage. Af-
ter cell loading in the microchambers, the SCBC is incubated
for a period of time, during which certain secreted proteins
are captured by the antibody barcodes, followed by on-chip
cell lysis and assaying cytoplasmic or membrane proteins
that are released. Wei et al. measured 5 intracellular proteins
(p-EGFR, p-ERK, p-mTOR, p-S6 K, HIF-1α) and three secreted
proteins (VEGF, IL-6, MMP-1) simultaneously with single-cell
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precision at different oxygen concentrations to investigate
how hypoxia conditions influence signaling networks and
secretion behaviors of cancer cells.53 Xue et al. quantitated 4
metabolites (c-AMP, c-GMP, GSH, glucose uptake) and 7
metabolism-related proteins (PFK, p-ACAC, p-LKB1, PDK,
HK2, PKM2, p-PFKFB2) in single cells separated from the
GBM39 neurosphere tumor model under drug perturba-
tions.76 The metabolic heterogeneity and the correlations be-
tween signaling proteins and metabolites yield rich informa-
tion in cellular metabolic signal regulations. Lu et al.
correlated the 15-plex cytokine signature with cell motility, a
cellular behavior of interest, by an SCBC-based measure-
ment.71 The SCBC platform has witnessed significant im-
provement in the multiplexing capacity, throughput and sen-
sitivity since its first debut in 2011, but is limited by the
complexity in antibody barcode fabrication and assay opera-
tion, low throughput for intracellular protein assay and a lack
of high-quality antibody pairs.

2.4 Single-cell protein electrophoresis

Capillary electrophoresis (CE) is a separation-based technique
and promising for single-cell analysis. The Zare group devel-
oped a microfluidic device that integrates manipulation, ly-
sis, capillary electrophoresis of single cells with single-
molecular fluorescence counting for quantifying rare proteins
(<1000 copies per cell).77 However, single-cell micro-scale CE
is limited by its low level of throughput and multiplexing ca-
pacity. To increase throughput, Dickinson et al. developed an
automated platform with a throughput of 2.1 cells per min to
achieve a fast single-cell CE.78

Single-cell western blotting (scWestern) integrates pro-
tein electrophoresis and antibody probing, enabling
multiplexed protein measurement at the single-cell level.79

Importantly, scWestern overcomes the antibody cross-
reactivity because proteins are first separated by molecular
mass (via electrophoresis) before the antibody probing
step, which allows clear discrimination between on-target
and off-target signals.79–82 In scWestern, a photoactive
polyacrylamide gel is coated on a microscope slide and
aligned with an array of open-microwells for single cell
settling, lysis in situ, gel electrophoresis, photo-initiated
blotting to immobilize proteins and antibody probing
(Fig. 1D). The scWestern technique supports ∼2000 con-
current single-cell western blotting assays in <4 h and
low starting cell numbers (∼200) which is helpful for ana-
lyzing rare but biologically important cells. Hughes et al.
reported a multiplexing capacity of 11 proteins, a linear
dynamic range of 1.3–2.2 orders and detection thresholds
of ∼27 000 molecules, and then applied this technique to
study variability in differentiation responses of immature
neural stem cells to homogeneous in vitro stimuli.79 Im-
portantly, pERK5, the off-target band for pERK1/2, was
identified in scWestern via protein electrophoresis, and
such an off-target signal was found to contribute up to
52% of the overall pERK signal in unstimulated cells.79

scWestern analysis is intrinsically well suited for identify-
ing and discarding off-target probing signals. Kang et al.
later systematically optimized in-well cell lysis and subse-
quent polyacrylamide gel electrophoresis (PAGE) of a
single-cell lysate.81 Duncombe et al. reported material ad-
vances of scWestern including a spatially modulated pore-
size gradient hydrogel and a dual cross-linked polyacryl-
amide gel formation.82 These advances enable thousands
of microscale pore-gradient electrophoresis gels to be cre-
ated on a standard glass slide and importantly, resolve a
broad molecular mass range of target proteins.82 Four
HER2-related representative signaling proteins including
eIF4E (25 kDa), ERK (44 kDa), HER2 (185 kDa) and mTOR
(289 kDa) are therefore assayed at the single-cell level in
breast cell lines and tumor biopsy. These signaling pro-
teins span a molecular mass range that encompasses
∼80% of mammalian proteome. scWestern detects pro-
teins with high specificity, but exhibits a lower linear dy-
namic range than other single-cell approaches based on
fluorescence readout.

Recently, the Herr group developed a single-cell isoelectric
focusing (scIEF) method to measure protein isoforms in indi-
vidual cells.83 In the scIEF assay, a 3D microfluidic device is
designed to integrate all preparatory and analytical steps, in-
cluding cell isolation, single cell lysis, isoelectric focusing,
UV-actuated blotting and in-gel immunoprobing. The scIEF
assay exhibits the ability to resolve isoforms of endogenous
proteins from single cells and provides a unique advantage
to cytometry methods and other microchip-based tools.

2.5 Droplet-based microfluidics

Microfluidic flow cytometry is not simply a miniaturized
version of flow cytometry. It permits analysis of a small
number of cells and enables integration of sample han-
dling and single cell analysis on a single microfluidic
chip.84–86 A variant of microfluidic flow cytometry is the
droplet-based microfluidics that encapsulates single cells
and cytokine-capture beads in droplets, enabling the mea-
surement of proteins released from or secreted by single
cells (Fig. 1E).87–93 Typically, a single cell is encapsulated
in 1 pL–2 nL water-in-oil droplets together with fluores-
cent probes and a functionalized bead. The bead captures
secreted proteins and fluorescent probes bind to captured
proteins resulting in a bright bead in the droplets for
analysis and cell sorting. Debs et al. utilized this tech-
nique to screen and sort single antibody secreting cells at
a high throughput rate.92 The droplet-based microfluidics
overcomes one of the major limitations of traditional flow
cytometry that has difficulty in detecting secreted proteins.
The recent progress in microfluidics allows generation of
droplets at kHz frequencies and reliable encapsulation of
single cells into pico- or nanoliter droplets, leading to
high-throughput analysis of individual cells.89 The main
limitation of this technique is the background fluores-
cence in the droplet from the unbound fluorescent labels,
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which cannot be removed without breaking the droplet.
Instead of water-in-oil droplets, Chokkalingam et al. en-
capsulated T cells and functionalized cytokine-capture
beads in monodisperse agarose droplets that were poly-
merized into hydrogel microparticles by cooling them at 4
°C.90 The porous nanostructure of gelled agarose micro-
particles allows bidirectional diffusion of molecules while
cells and beads are retained inside the particles. Unbound
fluorescent molecules are therefore washed off from aga-
rose microparticles to enhance the detection efficiency.
Akbari et al. encapsulated cells into alginate microparticles
for screening anti-TNF-α antibody-secreting cells from a
mixture of hybridoma cells producing anti-myc and anti-
TNF-α antibodies.93 This method prevents the crosstalk
between neighboring encapsulated cells and improves the
sensitivity.

A unique advantage of droplet-based microfluidics is its
capability of linking genotype with phenotype. Target pro-
teins secreted from encapsulated cells are detectable in the
droplets; meanwhile, these cells of interest can be sorted and
lysed in the droplets for amplification and detection of re-
leased DNA or RNA. Droplet-based microfluidics has the ma-
jor advantage of having high throughput but is limited by its
low multiplexing capacity.

The Tay group developed a new approach that combines
proximity ligation assay (PLA) and droplet digital PCR
(ddPCR) for quantification of both proteins and mRNA in
single cells.14 In a digital PLA, two proximity probes bind the
target protein released from lysed single cells, and the con-
nector oligonucleotide hybridizes with the probes, followed
by formation of a double-stranded DNA (Fig. 1F). After diges-
tion of proteins by proteases, the remaining dsDNA is then
detected and quantitated by ddPCR. This approach was
employed to count both endogenous (CD147) and exoge-
nously expressed (GFP-p65) proteins from hundreds of single
cells.14 This approach translates protein detection into DNA
detection, and is very similar to the strategy adopted by the
Weissleder group.57

2.6 Single molecular array

Single molecule array (SiMoA) quantitates the absolute num-
ber of proteins with low abundance. SiMoA employs a large
number of antibody-coated beads to capture a small amount
of proteins and thus realizes single molecules captured on
the beads for achieving single-molecule resolution. A micro-
well chip is then utilized to accommodate these beads,
followed by sandwich-type immunoassay for protein detec-
tion and enzyme amplification for signal readout. The num-
ber of proteins is calculated by counting the beads with am-
plified signals. Previous work using serum and other
biofluids has shown that SiMoA can dramatically improve de-
tection limits and exhibit a wide dynamic range compared to
traditional ELISA.94 This method is thereby qualified for
single-cell analysis, for example profiling prostate specific
antigen (PSA) expression in single prostate cancer cells.95

SiMoA is an ultrasensitive assay with absolute quantification
of target proteins, but is limited by its low multiplexing ca-
pacity, low throughput and high cost for single cell
measurement.

3. New biology learned from single-
cell functional proteomics

In the following section, we discuss biological and clinical
challenges that can be addressed by microchip-based single-
cell functional proteomics. These investigations have empha-
sized types of experiments that are not tractable using tradi-
tional population-based assays and other single-cell proteo-
mic technologies such as cytometry methods and single-cell
MS.96

3.1 Functional heterogeneity and dynamics of immune cells

Cellular immunity is functionally heterogeneous due to a va-
riety of potential pathogen targets. The function of immune
cells in vivo is mostly defined by the range of proteins they
produce. These secreted proteins mediate the tasks of inflam-
mation, target killing, self-renewal, recruitment of other types
of immune cells, immune system regulation and so on. Cy-
tometry methods have been utilized to profile cell surface
markers, intracellular cytokines and other biomolecules in
immune cells.97 To measure secreted proteins, cytometry
methods firstly block protein secretion and then fix and
permeablize the cells to allow immunostaining. Blocking of
protein secretion is a significant perturbation to cells and
assaying intracellular cytokines is not an accurate measure of
the function. Microchip-based platforms are able to address
this problem and have been utilized to study functional
heterogeneity in cellular immunity. Huck and coworkers uti-
lized an agarose droplet-based microfluidics to study cytokine
(IL-2, IFN-γ, TNF-α) secretion of single activated Jurkat T cells
(Fig. 2A).90 A total of 7415 cell-containing agarose microparti-
cles were characterized to reveal the presence of 8 different
cellular subpopulations. ∼85% of Jurkat T cells secreted one
or more cytokines and ∼57% of Jurkat T cells secreted all 3
tested cytokines upon stimulation and in-droplet incubation.
Only 15% of stimulated Jurkat T cells did not secrete any of
the tested cytokines. In-depth analysis revealed that cells that
secreted large amounts of IL-2 (>10 percentile) also secreted
significantly higher levels of TNF-α and IFN-γ. Meanwhile, a
population of cells that secreted intermediate levels of IL-2
was observed to produce significantly higher levels of TNF-α.
The droplet-based microfluidics provides a high-throughput
immune cell phenotyping that unravels the functional hetero-
geneity and maps subsets within immune cell population
with specific functions.

The microengraving method developed by the Love group
provides an alternative approach to profile secretion at the
single-cell level. Love and coworkers investigated the correla-
tion between cytolysis and cytokine secretion of thousands of
individual CD8+ T cells from HIV-infected patients. The
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majority of in vivo primed, circulating HIV-specific CD8+ T
cells were found discordant for cytolysis and cytokine secre-
tion, notably IFN-γ, when encountering cognate antigens
present on defined numbers of cells.62 Importantly the
microengraving method permits investigations of kinetics of
protein secretion by sequentially replacing, in situ, the micro-
engraved slide containing immunoassays. It is a unique fea-
ture compared with cytometry methods and other single-cell
proteomic methods. For example, Love and coworkers investi-
gated the kinetics of cytokine secretion (IFN-γ, IL-2, and TNF-
α) from single primary human T cells by serial micro-
engraving analyses (Fig. 2B).63 Interestingly, most of the T

cells were found to initiate secretion in a monofunctional
state, in other words, to release one of the above cytokines at
a time rather than maintaining active secretion of multiple
cytokines simultaneously. This single cell-based, kinetic assay
revealed that T cells follow programmatic, rather than ran-
dom, patterns of cytokine secretion. This method resolves T
cell secretion trajectories and has provided a higher resolu-
tion picture of T cell kinetics. In addition, the micro-
engraving method has been utilized to identify rare immune
cells with interesting functional properties, such as T cells
with efficient antigen-specific responses. These rare cells can
be recovered from the sub-nanoliter microwells by

Fig. 2 (A) Jurkat T cells showed heterogeneity in the secretion profiles. 8 sub-populations with different secretion signatures were identified and
∼15% of the cells did not secrete any of the tested cytokines. Reproduced from ref. 90 with permission from the Royal Society of Chemistry. (B)
Cytokine secretion kinetics of 3015 viable T cells. Each row within each block reflects the dynamic activity of an individual T cell over time. The
color wheel illustrates the type and relative magnitude of secreted cytokines; inactivity is black. Reproduced from ref. 63 with permission from the
Proceedings of the National Academy of Sciences. (C) NK cells act independently when lysing a single target cell in a nanowell. Representative dis-
tribution of SYTOX intensity in target cells after being co-incubated for 4 h in nanowells with one, two, or three NK cells. Data were gated to in-
clude wells containing a single target cell. Example images show the initial occupancy of the nanowells for each combination. The percentage of
lysed target cells (double-positive for SYTOX and CellTracker Red) is indicated. Reproduced from ref. 67 with permission from the Royal Society of
Chemistry. (D) SCBC-based single-cell phosphoproteomics was utilized to analyze patient derived GBM models for identifying shifts in signaling
coordination following short-term treatment with kinase inhibitors. This strategy facilitates the design of combinational therapies with reduced
drug resistance and enhanced efficacy. Reproduced from ref. 54 with permission from Elsevier. (E) Single-cell proteomic analysis (n = 85 markers,
3 below detection threshold) of 11 single cells in the fine-needle aspirate (FNA) obtained from a lung adenocarcinoma patient. Spearman R correla-
tion coefficient values for each of the single cells relative to each other and to the bulk measurement. Reproduced from ref. 57 with permission
from the American Association for the Advancement of Science.
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micromanipulation for additional investigations. For exam-
ple, Love and coworkers assessed HIV-specific T-cell re-
sponses and established clonal CD8(+) T-cell lines that repre-
sent the most abundant specificities present in circulation
using significantly fewer cells than traditional methods.64

Tay and coworkers developed a complex microfluidic chip
to investigate the kinetics of cytokine secretion and to corre-
late time-dependent cytokine secretion with transcription fac-
tor activity at the single-cell level under dynamic inflamma-
tory inputs.98 To enable a kinetic assay, antibody-coated
beads are firstly moved into chambers to capture secreted
proteins released from single cells and then moved out of
chambers until the next cycle of bead-based assay. Secreted
proteins are quantitated on the chip by conducting bead-
based fluorescent sandwich immunoassays with co-detection
of the transcription factor from the same single cells. This
system was employed to analyze macrophage signal process-
ing under pathogen inputs. The dynamics of TNF secretion
were found highly heterogeneous and uncorrelated with the
dynamics of NF-kB, the transcription factor controlling TNF
production.

Fan and coworkers significantly increased the
multiplexing capacity of single-cell secretion assay using a 42-
plexed SCBC for studying the cellular functional heterogene-
ity of differentiated macrophages stimulated with ligands of
different Toll-like receptors (TLRs).74 Several functional sub-
sets (quiescent, polyfunctional fully activated, partially acti-
vated) with distinct cytokine profiles were identified by ad-
vanced clustering analysis, which demonstrated intrinsic
functional heterogeneity in a phenotypically similar cell pop-
ulation. This work shows the potential of SCBC technology
for full spectrum profiling of immune functional states in re-
sponse to the environment or pathogenic stimulations and
thereby quantifying functional heterogeneity for accurate im-
mune monitoring.

3.2 Cell–cell interaction

Cells secrete functional proteins in response to not only ex-
ternal stimuli but also their own secreted signals, known as
an “autocrine manner”, as well as the signals secreted by
neighboring cells, known as a “paracrine manner”. For this
reason, decomposition of the source of signals and studying
how cell–cell communication contributes to the functional
cell-to-cell heterogeneity are crucial for understanding the
immune response. Miller-Jensen and coworkers combined
multiplexed, microwell-based single-cell measurements of cy-
tokine profiles with analysis of cytokine secretion by cell
populations to determine the role of paracrine signaling in
shaping macrophage cells' response to stimulation of Toll-
like receptor 4 (TLR4) by lipopolysaccharide (LPS).99 A system
biology model was then established highlighting how cell–
cell communication coordinated a rapid innate immune re-
sponse in the cell population.

The microchip-based method features creating a well-
controlled microenvironment for study cell–cell interaction.

This is a very unique property of microchips that cannot be
accomplished by other single-cell methods. Love and co-
workers utilized a microengraved platform to investigate the
interactions between natural killer (NK) cells and target cells
(e.g., tumor cells, virally infected cells). Secretory responses of
NK cells and the resulting cytolytic activity were quantified at
the single-cell level (Fig. 2C).67 They found that NK cells oper-
ated independently and promptly when lysing a single target
cell and that IFN-γ secretion correlated with low motility for
NK cells in contact with a target cell. This study on cell–cell
interaction integrates the secretory activity of single NK cells
with their cytolytic activity, leading to an improved under-
standing of the functional heterogeneity of the immune sys-
tem. Another example was shown by Heath and coworkers
who investigated the dynamics of secretion in hundreds of
isolated glioblastoma cell pairs and monitored their relative
motions over time.100 The two-cell secretion assays helped to
understand how cell–cell communication was coordinating
the behavior of cell–cell movement and to identify key pro-
teins most involved in maintaining the free-energy gradient
that drove cell–cell motion. Cell–cell signaling was found to
depend on the cell–cell separation distance and to influence
cellular arrangements in bulk culture. Inhibition of secreted
proteins mostly involved in establishing the free-energy gradi-
ent was found to cancel the direct motion. Such experiments
draw from informative assays combining single-cell proteo-
mics and functional measurements, and may eventually allow
complex phenomena within the tissue environment to be
understood.

3.3 Immune monitoring of patients undergoing
immunotherapy

Cellular immunity is functionally heterogeneous within a cell
population defined as relatively homogeneous by surface
markers. For capturing and characterizing this functional
heterogeneity, single-cell proteomics has been utilized to
monitor the functional activity of immune cells taken from
patients, for example metastatic melanoma patients partici-
pating in an adoptive cell transfer (ACT) trial that uses geneti-
cally engineered T cells expressing cancer-specific T-cell re-
ceptors (TCRs). In this therapy, the engineered tumor antigen
(MART-1)-specific T cells are expanded ex vivo and then in-
fused into the patient for driving an anti-tumor immune re-
sponse. It is therefore crucial to monitor the functional activ-
ity and dynamics of the transferred T cells by collecting them
at different time points with subsequent profiling of effecter
secreted proteins. Ma et al. assayed 12 secreted proteins in
MART-1-specific CD8+ T cells that were actively responding
to tumor and compared them against CD8+ T cells collected
from healthy donors.10 MART-1-specific CD8+ T cells were
found to have stronger perforin, IFN-γ and interleukin secre-
tion and a higher level of functional heterogeneity compared
with the healthy donor CD8+ T cell controls. Furthermore,
Ma et al. conducted a kinetic study on three melanoma can-
cer patients enrolled in the same ACT trial by 19-plexed SCBC
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secreted protein assays for monitoring the change of anti-
tumor responses.101 The adoptively transferred MART-1-
specific CD8+ T cells initially exhibit cytotoxicity-dominated
antitumor functions that lead to melanoma tissue destruc-
tion. Although the tissue destruction results in epitope
spreading, the antitumor functions cannot be maintained for
a long-term efficacy of TCR-engineering ACT immunotherapy.
These studies show that single-cell functional proteomics
yields an unprecedented high-resolution view of T-cell func-
tional dynamics in patient-derived samples. The new biology
learned from the functional evolution of engineered T cells
highlights the need to develop methods for maintaining a
long-term antitumor functionality of TCR-engineered T cells.

3.4 Predicting resistance or effectiveness of targeted
therapies

Single cell proteomic analysis has been applied to dissect the
molecular mechanisms of targeted therapy resistance. In a
very recent work,64 Wei et al. identified the rewiring of the
signaling network in GBM as a major mechanism of treat-
ment resistance without genome-wide mutation,
underscoring the importance of single-cell
phosphoproteomics and network rewiring in predicting can-
cer treatment responses (Fig. 2D).54,102 The Cancer Genome
Atlas (TCGA) on a vast panel of GBM patient samples has
identified important genomic alterations in the GBM genome
that can be clustered along a set of core druggable pathways
with potential drug targets.103 However, clinical trials with
drugs against these alterations or their downstream effectors
have yet to favorably impact the outcome for patients, in part
because of the emergence of nongenetic, adaptive resistance
in tumors. Wei et al. used a combined genomic analysis
(whole exome sequencing, transcriptome analysis and geno-
mic SNP analysis), stem cell marker tracing and single cell
phosphoproteomic analyses to investigate the in vivo re-
sponse of a primary GBM model to an mTOR kinase inhibi-
tor. Neither the genomic analysis nor the stem cell marker
tracing supported genetic or phenotypic selection as the
dominant resistance mechanism, suggesting an adaptive
mechanism of resistance through protein signaling rewiring.
The single cell proteomic assays on phosphoproteins associ-
ated with major signaling nodes of the hyperactivated path-
ways of GBM identified by TCGA, coupled to a new computa-
tional algorithm, uniquely resolved that while the mTOR
kinase inhibitor treatment repressed mTOR signaling and
signaling through the PI3k/Akt axis, it also activated signaling
through Src and MAPK/ERK. These results further led to the
identification of effective (and ineffective) therapies and ther-
apy combinations. Consistent with the prediction, combining
the mTOR inhibitor with an ERK inhibitor, a SRC inhibitor,
or with both was tested to be effective in preventing tumor
growth in mice bearing mTOR inhibitor-resistant GBM,
whereas neither any monotherapy nor the combination of
ERK and SRC inhibitors was effective. This approach was
then generalized to a low-passage EGFR over-expressing pa-

tient derived GBM cell line as well as a recurrent GBM patient
tumor, fresh from the operation room. A startling new in-
sight of this study is that the adaptive drug resistance may be
driven not only by the level of signaling proteins or phospho-
proteins downstream of growth factor pathway mutations,
but rather by their coordination. In the GBM in vivo model of
mTOR kinase resistance, the rewiring events were not
detected in changes in the phosphoprotein levels until the re-
sistant stage (day 38 following the start of treatment), but
were detected by changes in the protein–protein correlation
matrix as early as 2.5 days following the start of drug treat-
ment. This suggests that early changes in signaling coordina-
tion may be used to anticipate drug resistance, long before
full resistance has emerged, thus allowing clinicians to know
very quickly on a small biopsy the cellular effectiveness of a
treatment strategy.

Weissleder and coworkers utilized the antibody
barcoding with photocleavable DNA (ABCD) platform to
profile ∼90 membrane and intracellular proteins in cancer
cells from fine-needle aspirates (FNAs) for mapping inter-
and intrapatient heterogeneity in lung cancer at the pro-
tein level.57 Antibody-mediated magnetic selection was
firstly employed to isolate EpCAM positive tumor cells
from FNAs, followed by micromanipulation to harvest sin-
gle tumor cells for subsequent proteomic analysis. In one
representative patient, the correlation of protein marker
expression between 11 single cells and bulk FNAs was var-
ied, ranging from 0.43 to 0.79 (Fig. 2E), that was lower
than the correlations between single cells from cell lines
and their respective bulk. Even scarce proteins, such as
53BP1 and pH2A.X, were found to be detected at the sin-
gle cell level. This ABCD platform allows large-scale mem-
brane and intracellular protein profiling of isolated, rare
cells for shedding light on cancer heterogeneity which
may itself be a biomarker of poor clinical outcome. Fur-
thermore, this platform enables prediction of clinical out-
come or identification of promising markers of treatment
response by protein profiling on small numbers of cells
taken from FNAs. For example, unsupervised clustering of
protein profiles from four patients before and after PI3K
inhibitor treatment successfully separated out two groups
of responders and nonresponders. In five patients with
various PI3K mutations and receiving PI3K inhibitor treat-
ment, a marker-ranking algorithm was applied on the
measured protein profiles to determine top differential
markers for developing better companion diagnostics dur-
ing the treatment. Dimethylation of histone H3 at Lys79
(H3K79me2) was identified as the top marker, clustered
with several other markers including pS6RP (a down-
stream target of PI3K), pH2A.X (DNA damage marker),
PARP (DNA repair protein), and 4EBP1 (protein transla-
tion). This cluster best separated responders and nonre-
sponders. Importantly, this cluster covered diverse proteins
across various pathways including epigenetic changes,
DNA damage, and growth and survival pathways,
suggesting the importance of large-scale protein profiling.
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4. Conclusions and outlook

The remarkable advances of single-cell functional proteomics
provide powerful toolkits for assaying tens of proteins in
thousands of individual cells, shedding light on a variety of
biological questions that traditional population-based mea-
surement fails to address. These new single cell technologies
are now becoming routine in many laboratories, and are im-
proved towards a higher level of multiplexing and through-
put, as well as enhancing assay accuracy and robustness for
achieving more powerful data sets. From the perspective of
exploring the proteome of single cells, the major technical
bottleneck is, obviously, the low multiplexing capacity of cur-
rent single-cell proteomic methods. The cytometry and
microchip-based methods exhibit a multiplexing capacity of
10–40 proteins and only the ABCD platform has been
reported to assay 90 proteins simultaneously in single cells.
However, a panel of tens of proteins represent a very small
part of the whole proteome and extensive prior knowledge is
thus required in selection of the protein panel before
performing single-cell measurements. Upon more proteins
assayed and included in the analytical model, the signaling
networks are characterized in a more precise way and the
predictive capacity of the model becomes more accurate. The
low multiplexing capacity of current microchip-based single-
cell proteomic methods is attributed to two reasons. First,
these methods detect proteins mostly based on highly-
specific antibodies that bind their cognate proteins stoichio-
metrically. The availability of these antibodies is very limited,
especially for those methods that require antibody pairs.
Antibody cross-reactivity and variability, as well as inadequate
cell lines and animal models contribute to non-reproducible
findings in preclinical oncology research.104,105 Second, cur-
rent antibody-encoding strategies including fluorophores,
quantum dots, transition metal mass labels or spatially con-
trolled surface immobilization limit the number of proteins
assayed expandable to hundreds or more.

With the increase of multiplexing capacity and assay
throughput, single-cell functional proteomics generates high-
dimensional single cell data sets that require new analytical
strategies and computational tools for gleaning useful biolog-
ical insights from these data. For example, protein fluctua-
tions and the protein–protein correlations, uniquely resolved
by single cell measurements, allow extraction of key informa-
tion of signaling networks when coupled with appropriate an-
alytical approaches. Single-cell techniques resolve the cellular
heterogeneity and clarify the mapping between signaling
states and the phenotypes, enabling predictions of the
change of signaling states upon environmental and drug per-
turbations with the help of theoretical advance on under-
standing single-cell proteomics data.

Microchip-based methods allows making use of very small
samples, modulating the microenvironment for cell stimula-
tion, culturing or perturbation, and precisely manipulating
single cells, thereby providing a number of compelling advan-
tages in analyzing precious clinical samples. Clinical samples

usually contain multiple types of cells and only a small num-
ber of cells harbor a feature of interest, leading to key infor-
mation blurred by bulk-level measurement. Microchip-based
methods enable utilization of small samples and identifica-
tion of rare but biologically important cells from large num-
bers of background cells. Additionally, microchip-based
methods enable integration of sample preparation and prote-
omic assaying steps in the same platform to reduce sample
loss and improve assay automation. These features, obvi-
ously, represent unique advantages and great opportunity for
biomedical applications of microchip-based proteomics
platforms.
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